

## <u>US LHC Accelerator Research Program</u> brookhaven - fermilab - berkeley

## **Accelerator Systems Overview**

Budget profile

Beam commissioning

Initial suite of 3 instruments

Additional instrumentation

Fundamental accelerator physics

LHC IR upgrade



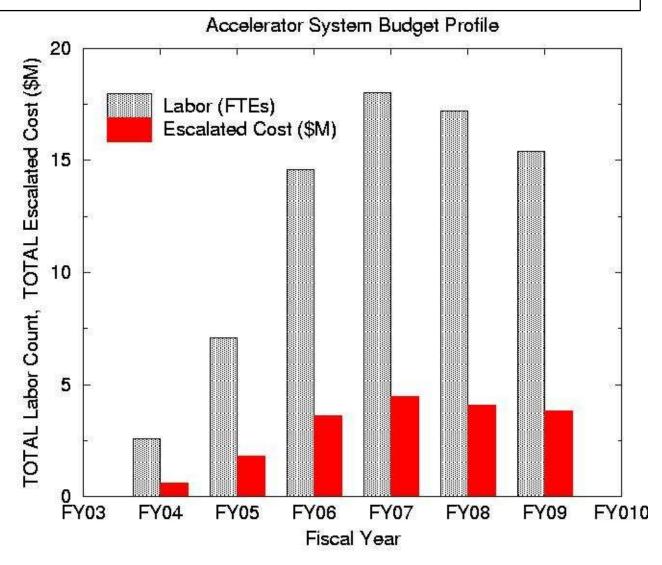
## **Accelerator Systems topics in LARP Proposal**

Program is truly multi-laboratory

Cross-integration
between
Instrumentation &
Accelerator
Physics activities

| ACCELERATOR SYSTEMS TOPIC            | page #   | BNL | FNAL | LBNL |
|--------------------------------------|----------|-----|------|------|
| Hardware Commissioning               | 15, 39   |     | Y    |      |
| Beam Commissioning                   | 15, 38   | Y   | Y    | Υ    |
| Initial Instrumentation              | 37       | ,   | •    | ,    |
| Tune, Chromaticity & Coupling Feedba | -        | Y   | Υ    |      |
| Real-Time Luminosity Measurements    | 16       | '   | Y    | Υ    |
| Longitudinal Beam-Density Monitor    | 17       | Y   | •    | Y    |
| Additional Instrumentation           | 37       | '   |      |      |
|                                      | 37<br>17 | Y   | Y    |      |
| Beam-Beam Compensation Systems       |          | •   | •    | V    |
| High Frequency Schottky              | 17       | Y   | Υ    | Y    |
| AC Dipoles                           | 18       | Y   |      |      |
| Fundamental Accelerator Physics      | 38       |     |      |      |
| Beam-Beam Interaction                | 18       | Υ   | Υ    | Υ    |
| Electron Cloud                       | 19       | Υ   |      | Υ    |
| Other Vacuum Effects                 | 19       | Υ   | Υ    |      |
| Remote Operations & Maintenance      | 19       | Υ   |      | Υ    |
| LHC Upgrade Related Activities       | 38       |     |      |      |
| Interaction Region Optics            | 25       | Υ   | Υ    |      |
| Interaction Region Compensation      | 25       | Υ   | Υ    |      |
| Energy Deposition                    | 26       |     | Υ    |      |
| Beam Loss Scenarios                  | 27       |     | Υ    |      |




## Accelerator Systems budget profile



## **Accelerator Systems budget profile**

# The 3 Accelerator Systems areas:

- 1) Instrumentation
- 2) Beam Comm.& FundamentalAcc. Physics
- 3) Hardware Commissioning





## Accelerator Systems budget breakdown

|                         |       | FY04 | FY05  | FY06  | FY07  | FY08  | FY09  |
|-------------------------|-------|------|-------|-------|-------|-------|-------|
| Labor Count             | FTE   | 2.6  | 7.1   | 14.6  | 18.0  | 17.2  | 15.4  |
| Labor Cost              | \$k03 | 502  | 1314  | 2410  | 2910  | 2676  | 2380  |
| Travel                  | \$k03 | 27   | 74    | 146   | 185   | 169   | 154   |
| Materials & Services    | \$k03 | 90   | 330   | 760   | 865   | 690   | 690   |
| TOTAL COSTS (escalated) |       |      |       |       |       |       |       |
| Instrumentation         | \$k   | 300  | 744   | 1,733 | 2,048 | 1,953 | 1,897 |
| Beam Comm & Acc Phys    | \$k   | 227  | 570   | 1,366 | 1,896 | 1,895 | 1,952 |
| Hardware Commissioning  | \$k   | 111  | 509   | 525   | 512   | 249   | 0     |
| GRAND TOTAL             | \$k   | 638  | 1,823 | 3,623 | 4,457 | 4,098 | 3,850 |
| Guideline               | \$k   | 635  | 1,820 | 3,620 | 4,460 | 4,100 | 3,840 |

Assumes "3 lab average" labor rate, and naïve (minimal) travel rate per FTE per year



## **Beam Commissioning**



## **Beam Commissioning**

The LHC is complex & will be challenging to put into operation.

The participation of experienced U.S. scientists will speed up LHC commissioning, bring higher luminosity earlier

Participation is also a direct benefit to the U.S. programs, since commissioning colliders is a once-in-a-decade opportunity.

Maintaining a core of (young) experience is vital for the present and future capabilities of hadron colliders in the U.S.



# **Beam Commissioning** How?

CERN is receptive: the consensus with Bailey, Collier, and Myers is to support 1 scientist per commissioning shift

- ideally: 12 FTEs

- guideline budget: 9.5 FTEs

Staff these shifts with a combination of visits:

- long (up to a year)
- relatively brief (as short as a month)

"Breadth and depth": the very best semi-junior physicists, as well as more senior experienced physicists.



# **Beam Commissioning** When?

#### Still must work out in detail how this will be done:

- integration with the CERN teams must begin well before first beam (injection test)
- compare with detector groups planning for remote groups to have system responsibilities



## **Beam Commissioning:**

## What is a "system"?

#### LARP Beam Commissioners must have specific responsibilities:

- "System Commissioners" (integrators) in RHIC parlance
- "Mr. X" in LEP operations parlance

#### Initial instruments are natural examples of a "system"

- a LARP Beam Commissioner may be an Instrumentation Physicist or an Accelerator Physicist
- but he/she pulls shifts, as a peer, in the Control Room
- instrument or not, the goal is "end-to-end" responsibility

Where are the boundaries of responsibility? Low/high level controls? Need more discussions with CERN ...



## **Initial Instrumentation Suite**



#### **Initial Instrumentation Suite**

All three initial instruments are needed for efficient LHC beam commissioning, and early high performance

They have been initially approved by the Program Leader with advice from the U.S. - CERN Steering Committee, with a refined approval of a more detailed plan yet to come

They push the state-of-the-art

In some cases their development will also contribute to the efficient operation of RHIC and the Tevatron



#### **Initial Instrumentation Suite**

- 1) Tune, Chromaticity, & Coupling Feedback
  - crucial for efficiency with intense beams suffering dynamic effects during & after injection, & all the way up the ramp
  - collaboration meeting on this topic, Fermilab, May 9 2003
- 2) Real-Time Luminosity Measurements
  - help keep the beams in exact collision.
  - assuming gas ionization technology, we will deliver the R&D on a time scale consistent with first collisions
- 3) Longitudinal Beam Density Monitor
  - vital, with 350 MJ of stored beam energy
  - observe fast (sub synchrotron period) beam dynamics



## **Additional Instrumentation**



#### **Additional Instrumentation**

"Additional instruments" are more technologically speculative

- decide which devices to support "at the appropriate time"
- potential examples:
  - 1) Beam-Beam Compensation Systems,
  - 2) High Frequency Schottky Monitors,
  - 3) AC Dipole,
  - 4) Consumable collimators (SLAC),
  - 5) ZDC Heavy Ion lumimonitors (DOE/NP)
  - 6) .....



## **Fundamental Accelerator Physics**



## **Fundamental Accelerator Physics**

#### **Beam-Beam Interaction**

- RHIC: strong-strong, Tevatron: Electron Lens, LBL: sims Electron cloud and other vacuum effects
  - RHIC & the Tevatron as cryogenic test beds. Synch light.

#### Remote operations & maintenance

- work with REAP, GRID, and MVL efforts

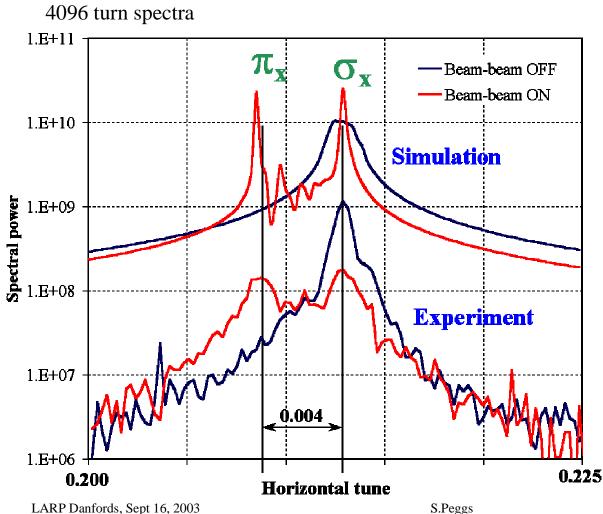
#### LHC upgrade optics

- synergy with magnet program

#### Interaction Region compensation

- before & after upgrade

#### Energy deposition and beam loss scenarios


- before & after upgrade



#### **Beam-Beam Interaction**

### Strong-Strong experiment & simulation (RHIC)

Data: Fischer et al (BNL). Simulation: M. Vogt et al., DESY



RHIC is first hadron collider to see strongstrong modes!

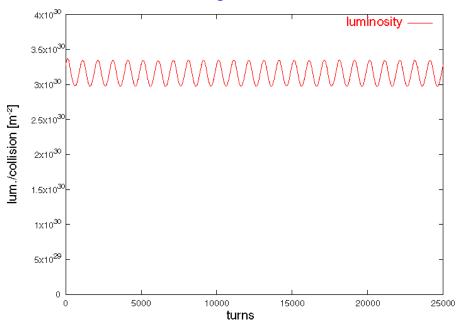
#### **Experiment:**

- single p bunch/ring
- $-\xi = 0.003$

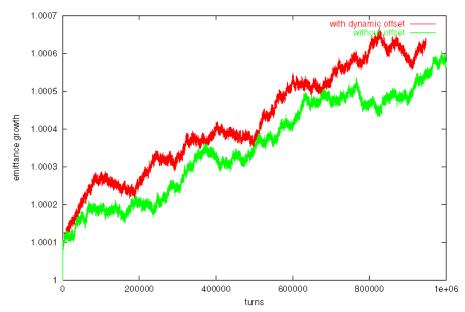
#### -Observation:

- $\pi_x$ -mode shift: 0.004
- expectation:

$$1.21 \cdot \xi = 0.0036$$


[Yokoya, Meller, Siemann]




#### **Beam-Beam**

## Simulated influence of wobbling

#### Simulation: J.Qiang, LBNL

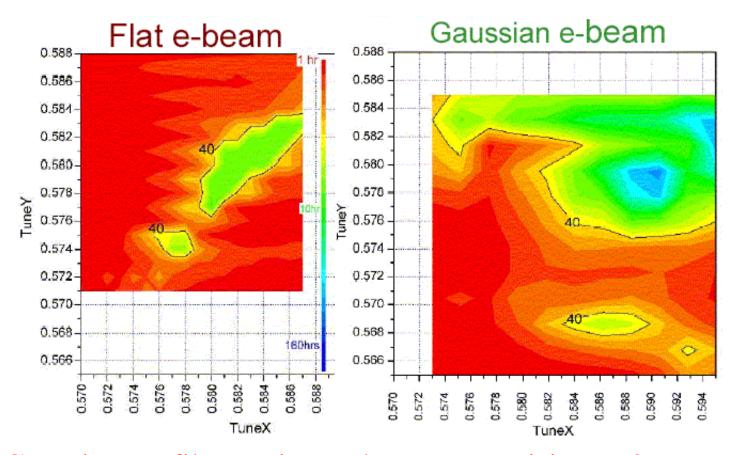


Luminosity per collision vs. time during circular sweeping in the lumimonitoring scheme being developed at LBNL



Emittance growth in a strongstrong beam-beam simulation. Green head-on BB collisions Red with 0.1 sigma wobbling

19



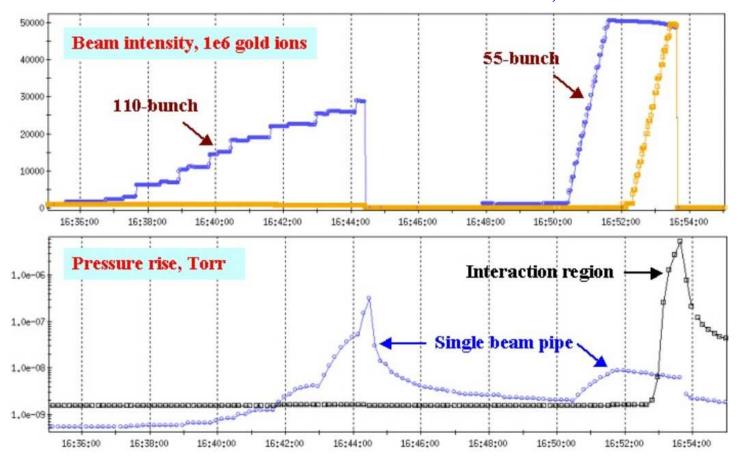

#### **Beam-Beam**

## Lifetime vs tunes with Tevatron Electron Lens

Data: V. Shiltsev, FNAL

#### TEL tune shift of 0.004




New Gaussian profile gun is much more promising ...?



#### Electron cloud and other vacuum effects

Data: Zhang, Fischer et al, BNL

#### RHIC suffers, but not the Tevatron



Destructive RHIC pressure rise in warm sections in both rings



# **Remote Operations and Maintenance**

The relevance is clear, although the technology is still in rapid motion

- CMS Virtual Control Room
- GRID, MVL



- symmetric synchronous
- symmetric sequential
- asymmetric

#### For LARP, asymmetric:

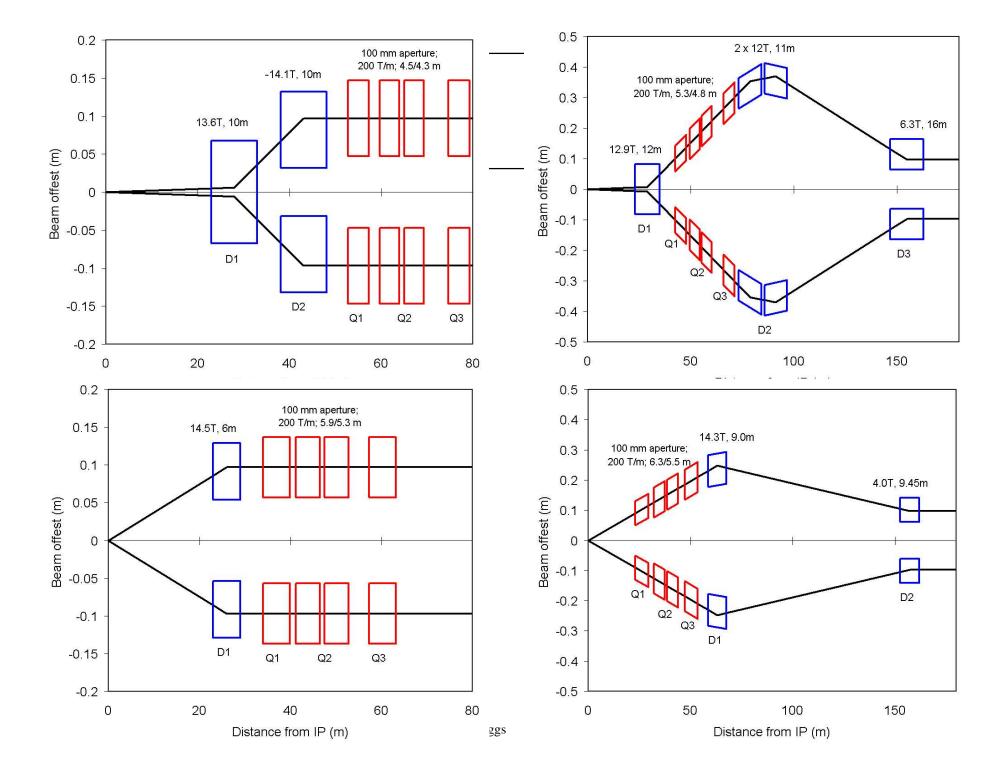
"Don't duplicate the entire control room, just enough identical displays, plus presence"





## LHC IR upgrade



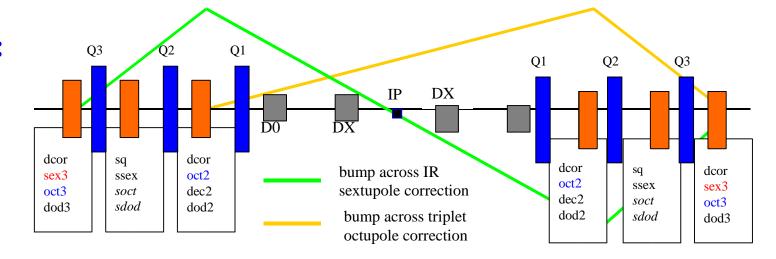

## **LHC upgrade optics**

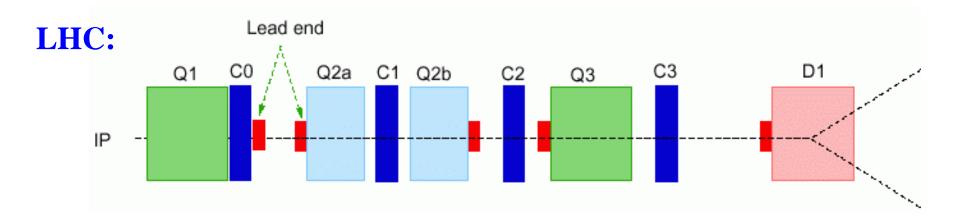
#### In principle there are many upgrade possibilities on the table ...

Table 2: Beam parameters for different LHC upgrade

|      | Scenario          | E     | Ib   | nb   | $\sigma_{z}$ | Luminosity |
|------|-------------------|-------|------|------|--------------|------------|
| Ref. | Remarks           | [TeV] | [mA] | [-]  | [mm]         | [cm-2.s-1] |
| Α    | Nominal           | 7     | 0.20 | 2808 | 77           | 1.00E+34   |
| A'   | Ultimate          | 7     | 0.30 | 2808 | 77           | 2.31E+34   |
| A"   | Modest upgrade    | 7     | 0.30 | 2808 | 38.5         | 4.63E+34   |
| Bbb  | With bunched beam | 7     | 0.30 | 5616 | 38.5         | 9.25E+34   |
| Bsb  | With super-bunch  | 7     | 1029 | 1    | 75000        | 9.40E+34   |
| B'   | Strong bunches    | 7     | 0.48 | 2808 | 77           | 8.70E+34   |
| Cbb  | With bunched beam | 14    | 0.14 | 2808 | 54.4         | 1.00E+34   |
| Csb  | With super-bunch  | 14    | 75.6 | 1    | 8250         | 1.00E+34   |
| Dbb  | With bunched beam | 14    | 0.23 | 5616 | 54.4         | 1.00E+35   |
| Dsb  | With super-bunch  | 14    | 720  | 1    | 75000        | 1.00E+35   |

... but in practice only IR upgrades are "this side of the horizon"




## **Interaction Region compensation**

RHIC -> LHC -> Upgrade

#### **RHIC:**







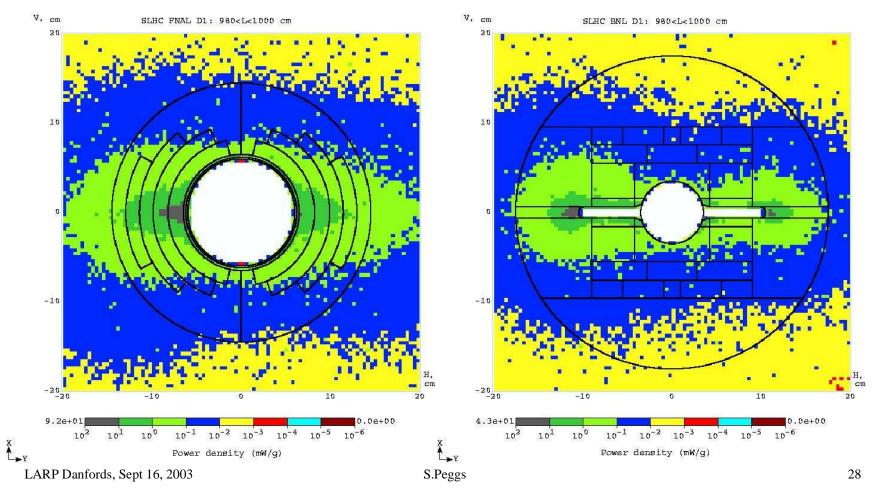
### **Energy deposition & beam loss scenarios**

The large stored energy (350 MJ) in the LHC beam will provide many operational problems

- analysis of energy deposition effects is ongoing
- strong technical expertise at Fermilab
- IR magnet heat load problem gets worse in an upgrade

Gradual beam loss from intended buckets into abort gap

- can cause quenching during beam dump/abort
- is not well understood (cf Tevatron)
- is amenable to study with Longitudinal Density Monitors




## **Energy deposition**

### D1 in a "dipoles first" upgrade scenario

MARS data: Mokhov et al, FNAL

#### Will the first beam splitting dipole survive? 3.5 kW per magnet?





### **Summary – 1**

#### Maximize early HEP output

- while advancing U.S. accelerator science & technology
- integrate AP, IP, & Engineering topics, at all 3 U.S. labs

#### Budget profile "plateaus" at about 17 FTEs, 4 M\$ per year

- Instrumentation
  - 3 Initial, then Additional Instruments
- Beam Commissioning (see below)
- Fundamental Acc Phys
  - FY04: level of effort activity for unique US capabilities
- Hardware Commissioning



## **Summary – 2**

#### **Beam Commissioning**

- control room shifts by Acc. & Instr. Physicists
- integration with CERN teams must begin early
- Beam Commissioners will have system responsibilities eg "end-to-end" integration of initial 3 instruments
- where are the boundaries, etc? More discussion needed